On the Onsager problem for Potts models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 191469
(http://iopscience.iop.org/0305-4470/19/8/027)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:32

Please note that terms and conditions apply.

On the Onsager problem for Potts models

A K Kwaśniewski
Institute of Theoretical Physics, University of Wroclaw, 50-205 Wroclaw, Cybulskiego 36, Poland

Received 12 February 1985, in final form 20 August 1985

Abstract

It is shown how the calculation of partition functions for all Potts models might be reduced to the calculation of $\operatorname{Tr}\left(\gamma i_{1} \ldots \gamma i_{p n}\right)$ where the γ stand for generators of a generalised Clifford algebra. Then the expression for $\operatorname{Tr}\left(\gamma i_{1} \ldots \gamma i_{s}\right)$ for an arbitrary collection of such γ matrices is derived.

1. Introduction

The transfer matrix technique for a statistical system with the most general translational invariant and globally symmetric Hamiltonian on a two-dimensional lattice leads to appropriate algebras of operators which are algebra extensions of the type naturally associated with the lattice-grading groups.

If the symmetry group of a Hamiltonian is the Z_{n} cyclic group then the algebra generated by the transfer matrix approach is, in most of the known cases, the generalised Clifford algebra $C_{k}^{(n)}[1]$. It is due to its properties that the given model has the duality property [2-4].

In this paper we investigate the consequences of the simple fact that transfer matrices for all Potts models on the torus are just specific elements of the $C_{2 p}^{(n)}$ algebra. Before we do this we give in $\S 2$ some preliminary remarks about $C_{2 p}^{(n)}$ algebras [1] as well as some other necessary generalisations [2].

The motivation for the investigation presented comes from Baxter [12] who writes: 'The only hope that occurs to me is just as Onsager (1944) and Kaufmann (1949) originally solved the zero-field Ising model by using the algebra of spinor operators, so there may be similar algebraic methods for solving the eight-vertex and Potts models'.

2. Preliminaries

In this section we introduce appropriate generalisations of γ matrices and cosh functions, to be used later on while investigating the algebraic structure of transfer matrices for Potts models.

We start with the $C_{2 p}^{\prime n \prime}$ generalised Clifford algebra [1] which is defined as an associative algebra over complex numbers \mathbb{C}, generated by $\gamma_{1}, \ldots, \gamma_{2 p}$ matrices satisfying

$$
\begin{align*}
& \omega \gamma_{i} \gamma_{j}=\gamma_{j} \gamma_{i} \quad i<j ; \quad \gamma_{i}^{n}=0 ; \quad i, j=1, \ldots, 2 p \\
& \omega=\exp (2 \pi \mathrm{i} / n) . \tag{2.1}
\end{align*}
$$

The algebra of ($n^{P} \times n^{P}$) matrices has-up to equivalence-only one irreducible and faithful representation. Its generators $\left\{\gamma_{i}\right\}_{1}^{2 p}$ can be represented as tensor products of generalised ($n \times n$) Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$ in complete analogy with the usual Clifford algebra case. One should however distinguish the case of n being odd from that of n being even [1], namely for n odd:

$$
\begin{align*}
& \sigma_{1}=\left(\delta_{i+1, j}\right), \quad \sigma_{2}=\left(\delta_{i+1, j} \omega^{j}\right) \\
& \sigma_{3}=\sigma_{1}^{n-1} \sigma_{2}=\left(\omega^{i} \delta_{i j}\right) \tag{2.2}
\end{align*}
$$

where $i, j \in Z_{n}^{\prime}=\{0,1, \ldots, n-1\}$, i.e.

$$
\begin{aligned}
\sigma_{1}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cccccc}
0 & \omega & 0 & 0 & \ldots & 0 \\
0 & 0 & \omega^{2} & 0 & \ldots & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & 0 & \ldots & \omega^{n-1} \\
1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) \\
\sigma_{3}=\left(\begin{array}{llll}
1 & & \\
& \omega & & \\
& & & \omega^{2} \\
& & & \\
\omega^{n-1}
\end{array}\right) .
\end{aligned}
$$

For n even σ_{2} and σ_{3} are different, i.e.

$$
\begin{equation*}
\sigma_{2}=\left(\xi^{2 i+1} \delta_{i+1, j}\right), \quad \sigma_{3}=\xi \sigma_{1}^{n-1} \sigma_{2} \tag{2.3}
\end{equation*}
$$

where ξ is the primitive $2 n$th root of unity.
With the use of generalised Pauli matrices one readily finds a Kronecker product representation of γ. We choose the following one:

$$
\begin{align*}
& \gamma_{1}=\sigma_{3} \otimes I \otimes I \otimes \ldots \otimes I \otimes I \\
& \gamma_{2}=\sigma_{1} \otimes \sigma_{3} \otimes I \otimes \ldots \otimes I \otimes I \\
& \vdots \\
& \gamma_{p}=\sigma_{1} \otimes \sigma_{1} \otimes \ldots \otimes \sigma_{1} \otimes \sigma_{3} \\
& \gamma_{p+1}=\bar{\gamma}_{1}=\sigma_{2} \otimes I \otimes I \otimes \ldots \otimes I \otimes I \\
& \gamma_{p+2} \equiv \bar{\gamma}_{2}=\sigma_{1} \otimes \sigma_{2} \otimes I \otimes I \tag{2.4}\\
& \vdots \\
& \gamma_{2 p} \equiv \bar{\gamma}_{p}=\sigma_{1} \otimes \sigma_{1} \otimes \ldots \otimes \sigma_{1} \otimes \sigma_{2} .
\end{align*}
$$

The basic importance of $C_{2 p}^{(n)}$ algebra for us relies on the observation that transfer matrices for both planar and standard Potts models are just specific polynomials in the above γ matrices.

Apart from the generalisation of the Clifford algebra we shall also need 'generalised cosh' functions and appropriate projection matrices [2].

We start with the 'cosh' function. Let x be any element of an associative finitedimensional algebra (for example, a number or matrix). We define

$$
\begin{equation*}
f_{i}(x)=\sum_{k=0}^{\infty} \frac{x^{n k+i}}{(n k+i)!}, \quad i \in Z_{n}^{\prime} \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i=0}^{n-1} f_{i}(x)=\mathrm{e}^{x}, \quad f_{i}(\omega x)=\omega^{i} f(x), \quad i \in Z_{n}^{\prime} \tag{2.6}
\end{equation*}
$$

From (2.6) one easily derives

$$
\begin{equation*}
f_{i}(x)=\frac{1}{n} \sum_{k=0}^{n-1} \omega^{-k i} \exp \left(\omega^{k} x\right), \quad i \in Z_{n}^{\prime} \tag{2.7}
\end{equation*}
$$

Most of the identities satisfied by cosh and sinh functions generalise straightforwardly to the case of f_{i}; for example

$$
\begin{equation*}
\sum_{i=0}^{n-1} f_{i}(x) f_{k-i}(x)=f_{k}(2 x), \quad k \in Z_{n}^{\prime} \tag{2.8}
\end{equation*}
$$

These f_{i} functions are shown to be important also while considering the duality property of the planar Potts models [3] because the eigenvalues $\chi_{k} ; k \in Z_{n}^{\prime}$ (with $\chi_{k}=\chi_{-k}$) of the interaction matrix are expressed by f_{i} according to the formula [2]

$$
\begin{equation*}
n \sum_{i=0}^{n-1} f_{i}(a) f_{i-k}(a)=\chi_{k}(a) \tag{2.9}
\end{equation*}
$$

where a is a parameter.
Finally we introduce adequate projection operators. Let U be a matrix (or number or just an element of an associative algebra) satisfying $U^{n}=1$. We define

$$
\begin{equation*}
V=\frac{1}{n} \sum_{i=0}^{n-1} U^{i} \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
V^{2}=V \tag{2.11}
\end{equation*}
$$

as could easily be shown.
If one now introduces a set $\left\{V_{k}\right\}_{0}^{n-1}$ of projection operators

$$
\begin{equation*}
V_{k}=\frac{1}{n} \sum_{i=0}^{n-1} \omega^{-k i} U^{i}, \quad k \in Z_{n}^{\prime} \tag{2.12}
\end{equation*}
$$

one finds that

$$
\begin{equation*}
V_{k} V_{l}=\delta_{k l} V_{k} . \tag{2.13}
\end{equation*}
$$

This ends the preliminary section. In the following we shall investigate the structure of the transfer matrix, mostly for the planar Potts model, using the following standard operators:

$$
\begin{array}{ll}
\chi_{k}=I \otimes \ldots \otimes I \otimes \sigma_{1} \otimes I \otimes \ldots \otimes I & p \text { terms } \\
Z_{k}=I \otimes \ldots \otimes I \sigma_{3} \otimes I \otimes \ldots \otimes I & p \text { terms } \tag{2.15}
\end{array}
$$

where σ_{1} and σ_{3} (together with $I:(n \times n)$ matrices) are situated on the k th site from the left-hand side.

3. The structure of transfer matrices

The transfer matrix approach has led the authors of [3-5] to the use of $C_{2 p}^{(n)}$ algebras, although this observation does not seem to be realised by the authors mentioned.

Meanwhile it is a very important fact that the transfer matrix M is just an element of $C_{2 p}^{(n)}$; hence it is a specific polynomial in γ matrices (2.4). Due to this, the problem of determining the partition function might be reduced to the problem of calculating traces: $\operatorname{Tr} \gamma_{i_{1}} \ldots \gamma_{i_{k}}$ (modulo eventual combinatorial complexity). This point of view is known to lead to the exact solution of the Onsager problem, with the use of Pfaffians at the final stage [6] of computations, for the Ising model.

We are now going to investigate algebraic properties of transfer matrices for Potts models. Let us assign to the torus $p \times q$ lattice (p rows, q columns) a set of states

$$
\mathscr{X}=\left\{\left(s_{i k}\right) ; s_{i k} \in \mathbf{Z}_{n}\right\}
$$

where the multiplicative realisation of the Z_{n} cyclic group is chosen and $s_{i k},\left(s_{i k} \in\right.$ $\left\{\omega^{r}\right\}_{0}^{n-1}$), denotes a matrix element of the $p \times q$ matrix.

The total energy for the standard Potts model is then given by

$$
\begin{equation*}
-\frac{E\left(s_{i k}\right)}{k T}=\sum_{i, k}^{p, q}\left[a \delta\left(s_{i k}-s_{i, k+1}\right)+\delta\left(s_{i k}-s_{i+1, k}\right)\right] \tag{3.1}
\end{equation*}
$$

while for the planar Potts model

$$
\begin{equation*}
-\frac{E\left(s_{i k}\right)}{k T}=\sum_{i, k}^{p, q}\left[a\left(\bar{s}_{i k} s_{i, k+1}+\bar{s}_{i, k+1} s_{i k}\right)+b\left(\bar{s}_{i k} s_{i+1, k}+\bar{s}_{i+1, k} s_{i k}\right)\right] . \tag{3.2}
\end{equation*}
$$

The transfer matrix M is represented as a product

$$
\begin{equation*}
M=B A \tag{3.3}
\end{equation*}
$$

where in the case of the standard Potts model $[4,7]$

$$
\begin{equation*}
B=\prod_{k=1}^{p} \exp \left(\frac{1}{n} \sum_{i=0}^{m-1}\left(Z_{k}^{+} Z_{k+1}\right)^{i}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\prod_{k=1}^{p}\left(\mathbb{J} \mathrm{e}^{a}+\sum_{i=1}^{m-1} X_{k}^{i}\right) \tag{3.5}
\end{equation*}
$$

The corresponding expressions for A and $B\left(n^{P} \times n^{p}\right)$ matrices in the case of the planar Potts model [4,7] are given by

$$
\begin{equation*}
B=\prod_{k=1}^{p} \exp \left(Z_{k}^{+} Z_{k+1}+Z_{k+1}^{+} Z_{k}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\prod_{k=1}^{p}\left(\sum_{i=0}^{n-1} \lambda_{i} X_{k}^{i}\right) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{i}=\exp \left(2 a \operatorname{Re} \omega^{\prime}\right) \tag{3.8}
\end{equation*}
$$

The boundary conditions corresponding to the torus lattice result in the requirement

$$
\begin{equation*}
Z_{p+1}=Z_{1} \tag{3.9}
\end{equation*}
$$

The interaction ($n \times n$) matrices \hat{a} for corresponding models are given by (planar)

$$
\hat{a}(a)=\sum_{i=0}^{n-1} \lambda_{i} \sigma_{1}^{i}=\left(\begin{array}{ccccc}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{n-1} \tag{3.10}\\
\lambda_{n-1} & \lambda_{0} & \lambda_{1} & \ldots & \lambda_{n-2} \\
& & & \ldots & \\
\lambda_{1} & \lambda_{2} & \lambda_{3} & \ldots & \lambda_{0}
\end{array}\right)
$$

(standard)

$$
\hat{a}(a)=\mathbb{1} \mathrm{e}^{a}+\sum_{i=1}^{n-1} \sigma_{1}^{i}=\left(\begin{array}{cccccc}
\mathrm{e}^{a} & 1 & 1 & \ldots & 1 & 1 \tag{3.11}\\
1 & \mathrm{e}^{a} & 1 & \ldots & 1 & 1 \\
& & & \ldots & & \\
1 & 1 & 1 & \ldots & 1 & e^{a}
\end{array}\right) .
$$

A knowledge of interaction matrices enables one to represent the matrix A in an exponential form after a dual parameter a^{*} has been introduced. As (3.11) is a special case of (3.10) we shall proceed to do so only for the planar Potts model.

If one defines the dual parameter $a^{*}[2,8]$ according to

$$
\begin{equation*}
\operatorname{det} \hat{a}\left(a^{*}\right)=n^{n}[\operatorname{det} \hat{a}(a)]^{-1} \tag{3.12}
\end{equation*}
$$

then the matrix A can be written in the form

$$
\begin{equation*}
A=[\operatorname{det} \hat{a}(a)]^{p / n} \exp \left(a^{*} \sum_{k=1}^{p}\left(X_{k}+X_{k}^{+}\right)\right) \tag{3.13}
\end{equation*}
$$

It should be noted that the factor in front of the exponential is known as

$$
\begin{equation*}
\operatorname{det} \hat{a}(a)=\prod_{k=0}^{n-1} \chi_{k}(a), \tag{3.14}
\end{equation*}
$$

where χ_{k} are given by (2.9).
Due to the property $X_{k}^{n}=Z_{k}^{n}=\mathbb{1}$ both A and B operators could be expressed as simple polynomials in X and Z with the coefficients just being products of $f_{i}\left(a^{*}\right)$ and $f_{j}(b)$. The boundary conditions, as in the Ising model case, give rise to projection operators (n of them). First we shall analyse the B matrix of the planar Potts model with boundary conditions being taken into account. In order to do that we extract from B the boundary term and notice (for n odd) that [7]

$$
\begin{equation*}
\exp \left(b Z_{p}^{+} Z_{1}\right)=\exp \left(b U \bar{\gamma}_{p}^{-1} \gamma_{1}\right) \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\prod_{k=1}^{p} \gamma_{k}^{-1} \bar{\gamma}_{k}=\omega^{-1} \otimes^{p} \sigma_{1}, \tag{3.16}
\end{equation*}
$$

(hence $U^{n}=0$).
The n-even case differs only in a factor [7], for example

$$
Z_{p}^{+} Z_{1}=\xi^{-1} U \bar{\gamma}_{p}^{-1} \gamma_{1}
$$

Therefore from now on we shall write formulae only for n odd.
The (3.15) term and its Hermitian conjugate may be expressed in terms of the projection matrices V_{k} defined by (2.12) and, if in addition a set of $\left\{B_{k}\right\}_{0}^{n-1}$ matrices is introduced according to

$$
\begin{equation*}
B_{k}=\exp \left(b \sum_{\alpha=1}^{p-1} \bar{\gamma}_{\alpha}^{-1} \gamma_{\alpha+1}\right) \exp \left(b \omega^{k} \bar{\gamma}_{p}^{-1} \gamma_{1}\right) \tag{3.17}
\end{equation*}
$$

then, due to (2.13), the final expression for the B matrix reads as follows:

$$
\begin{equation*}
B=\sum_{k=0}^{n-1} B_{k} B_{k}^{+} V_{k} \tag{3.18}
\end{equation*}
$$

It is now obvious that a similar structure for B can be obtained for the standard Potts model, and that for both cases the transfer matrix M is a polynomial in γ.

Because of (3.16) all V commute with the A matrix; therefore we obtain for the partition function \mathscr{Z} the following formula:

$$
\begin{equation*}
\mathscr{Z}=\operatorname{Tr} M^{q}=\operatorname{Tr}\left(\sum_{k=0}^{n-1}\left[B_{k} B_{k}^{+} A\right]^{q} V_{k}\right) . \tag{3.19}
\end{equation*}
$$

Already from formula (3.19) one may draw an important conclusion, namely the partition function \mathscr{Z} for a finite torus lattice with \mathbf{Z}_{n} symmetry is proportional to a polynomial in $f_{i}\left(a^{*}\right)$ and $f_{j}(b)$, the coefficients of the corresponding monomials being ω^{k} for some $k \in Z_{n}^{\prime}$. This is easily seen from the fact that $X_{k}=\omega^{-1} \gamma_{k}^{-1} \bar{\gamma}_{k}$ (for n odd), $\bar{\gamma}_{k}^{n}=\gamma_{k}^{n}=\mathbb{\rrbracket}$ and (as we shall see) because the normalised trace takes the values

$$
\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{i}}\right) \in\left\{0, \omega^{k} ; k=0,1, \ldots, n-1\right\} .
$$

For $n=2$ ($\left.f_{0} \equiv \cosh , f_{1} \equiv \sinh \right)$ this polynomial is known [6] due to the properties of the Pfaffian. For arbitrary n the form of this polynomial can also be derived [7]. However no transparent final formula is known to us and an adequate generalisation of the trace formula $\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{s}}\right)$ though also already known-used together with the expression for the polynomial in γ-gives a rather complicated outcome. We hope however to achieve meaningful progress in that direction soon.

The use of the generalised Pfaffian-like formula is of course not the only way to proceed with the expression (3.19). One may also try to follow, by analogy with $n=2$, those approaches which use Grassmann algebras associated with Clifford algebras via Witt decomposition ('Fermi operators') as for example in [9] or (another method) in [10]. The appropriate generalised Grassmann algebras associated with the $C_{2 p}^{(n)}$ ones ('paraFermi operators') are known [11]. Meanwhile, we conclude our temporal investigation by supplying, in the forthcoming section, a trace formula (4.1) for the arbitrary monomial in generalised γ.

4. The trace formula

Let us adopt the convention: $\operatorname{Tr} \mathbb{\jmath}=1$. In the following the explicit formula for the trace of any element of the $C_{2 p}^{(n)}$ algebra is derived. This also solves the problem of traces for the $C_{2 p+1}^{(n)}$ algebra as $C_{2 p+1}^{(n)}$ is a direct sum of n copies of $C_{2 p}^{(n)}$.

The derivation has the form of a sequence of five lemmas, where (stated once for all five) $i_{1}, \ldots, i_{k}, \ldots, i_{k n}=1, \ldots, 2 p$.

Lemma 1. Let $k \neq 0 \bmod n ; k \in \mathbb{N}$. Then $\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{k}}\right)=0$.
Proof. The same as for usual Clifford algebras. Use the U matrix defined by (3.16).
From now on S_{r} denotes a group of permutations of the r-elemental set. With this in mind we have the following lemma.

Lemma 2. $\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{k n}}\right) \neq 0$ iff there exists $\sigma \in S_{k n}$ such that
(a) $i_{\sigma(1)}=i_{\sigma(2)}=\ldots=i_{\sigma(n)}$,
$i_{\sigma(n+1)}=\ldots=i_{\sigma(2 n)}, \ldots, i_{\sigma(k n-n+1)}=\ldots=i_{\sigma(k n)}$.
Proof. The proof follows from the observation that, due to (2.1), if no n-tuple of the same γ exists then $\operatorname{Tr}(\ldots)=0$. Other $k-1$ steps of the proof are reduced to this first one.

It is then trivial to note but important to realise the following lemma.
Lemma 3. $\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{k}}\right) \in\left\{0, \omega^{s} ; s=0,1, \ldots, n-1\right\}$.
The major problem now is to determine this value ' 0 ' or ' ω ' for an arbitrary set of indices i_{1}, \ldots, i_{k}. For $n=2$ it is the signum function that takes care of the $(-1)^{s}$ value of $\operatorname{Tr}(\ldots) \neq 0$. We shall therefore introduce a generalisation of the signum function according to the following definition.

Definition. The signum-like function K is a surjective map $K: S_{p} \rightarrow Z_{n}$ defined by

$$
\theta_{\sigma(1)} \theta_{\sigma(2)} \ldots \theta_{\sigma(p)}=K(\sigma) \theta_{1} \theta_{2} \ldots \theta_{p}
$$

where

$$
\omega \theta_{i} \theta_{j}=\theta_{j} \theta_{i} \quad i<j, \quad \theta_{i}^{2}=0, \quad i, j=1, \ldots, p .
$$

For $n=2$ these θ matrices become anticommuting matrices, i.e. the generators of Grassmann algebra, while K becomes (only for $n=2$) the epimorphism.

Now consider a set of $\gamma_{i_{1}}, \ldots, \gamma_{i_{k n}}$ matrices which consists of k different n-tuples of correspondingly the same γ mixed together. Then of course there exists $\sigma \in S_{k n}$ satisfying (a) from lemma 2. In fact there are many. If one however chooses one such that
(b) $\sigma(1)<\sigma(2)<\ldots<\sigma(n)$,

$$
\sigma(n+1)<\ldots<\sigma(2 n), \ldots, \sigma(k n-n+1)<\ldots<\sigma(k n)
$$

then one has the following lemma.
Lemma 4. Let $\gamma_{i_{1}}, \ldots, \gamma_{k_{k}}$ be such a collection of k different n-tuples of generalised γ matrices that conditions (a) and (b) are satisfied; then

$$
\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{k} n}\right)=K\left(\sigma^{-1}\right)
$$

Proof. This follows directly from the definition of the K signum-like function.
The generalisation of lemma 4 to the arbitrary case of some of the n-tuples being equal is straightforward. Bearing this in mind and from the other lemmas we have another lemma.

Lemma 5

$$
\begin{align*}
\operatorname{Tr}\left(\gamma_{i_{1}} \ldots \gamma_{i_{k n}}\right) & =\sum_{\sigma \in S_{k n}^{\prime}}^{\prime} K\left(\sigma^{-1}\right) \delta\left(i_{\sigma(1)}, \ldots, i_{\sigma(n)}\right) \\
& \times \delta\left(i_{\sigma(n+1)}, \ldots, i_{\sigma(2 n)}\right) \times \ldots \times \delta\left(i_{\sigma(k n-n+1)}, \ldots, i_{\sigma(k n)}\right) \tag{4.1}
\end{align*}
$$

for an arbitrary collection of indices $i_{1}, \ldots, i_{k n}$, where δ denotes the multi-index Kronecker delta, i.e. it assigns zero to its arguments unless all of them are equal and in this case $\delta(\ldots)=1$. The sum Σ is meant to take into account only these permutations \in $S_{k n}$ that satisfy the following conditions:
(b) $\sigma(1)<\sigma(2)<\ldots<\sigma(n), \sigma(n+1)<\ldots<\sigma(2 n), \ldots, \delta(k n-n+1)<\ldots<\sigma(k n)$ and
(c) $\sigma(1)<\sigma(n+1)<\ldots<\sigma(k n-n+1)$.

The '(c)' condition is necessary to avoid an overcounting of σ satisfying (a).
Lemma 5 provides us then with the straightforward generalisation of the Pfaffian also for linear combinations of generalised γ as can be seen from the following lemma.

Lemma 6. Let $\hat{P}=\sum_{i=1}^{2 r} p_{i} \gamma_{j}$ where $\left\{\gamma_{j}\right\}_{1}^{2 r}$ form the set of generators for $C_{2 r}^{(n)}$, while $p_{i} \in \mathbb{C} ; i=1, \ldots, 2 p$. Let

$$
P=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{2 r}
\end{array}\right)
$$

and denote by $\left(P_{1}, P_{2}, \ldots, P_{n}\right)=\sum_{i=1}^{2 r} p_{1 i} p_{2 i} \ldots p_{n i}$ an n-linear 'scalar product' of P_{1}, \ldots, P_{n} vectors [11]. Then

$$
\begin{align*}
\operatorname{Tr}\left(\hat{P}_{1} \hat{P}_{2} \ldots \hat{P}_{k n}\right) & =\sum^{\prime} k\left(\sigma^{-1}\right)\left(P_{\sigma(1)}, P_{\sigma(2)}, \ldots, P_{\sigma(n)}\right) \\
& \times\left(P_{\sigma(n+1)}, \ldots, P_{\sigma(n)}\right) \ldots\left(P_{\sigma(k n-n+1)}, \ldots, P_{\sigma(k n)}\right) . \tag{4.2}
\end{align*}
$$

Again Σ^{\prime} means that conditions (b) and (c) are satisfied. Naturally formula (4.2) solves the problem of taking the trace from a product of any number of \hat{P} as this trace is zero, for the number of P different from $k n, k \in \mathbb{N}$.

The formula (4.2) might be useful for our purposes if one could express matrices A and B as a product of \hat{P} which however seems to be possible only for $n=2$.

References

[1] Morris A 01967 Q. J. Math. Oxford 2 (18) 7-12
[2] Kwaśniewski A K Preprint E17-85-86 JINR Dubna
[3] Alcaraz F C and Köberle R 1980 J. Phys. A: Math. Gen. 13 L153-60; 1981 J. Phys. A: Math. Gen. 14 1169-92
[4] Mittag L and Stephen M J 1971 J. Math. Phys. 12441
[5] Bashilov Y A and Pokrovsky S V 1980 Commun. Math. Phys. 76 129-41
[6] Valuev B N 1977 Preprint P17-11020 JINR Dubna
[7] Kwaśniewski A K 1984 Preprint ITP UWr 84/621 Wroclaw
[8] Kwaśniewski A K 1984 Preprint ITP UWr 84/626 Wroclaw
[9] Thompson C J 1971 Mathematical Statistical Mechanics (New York: Macmillan)
[10] Hurst C A and Green H S 1960 J. Chem. Phys. 33 1059-62
[11] Kwaśniewski A K 1985 J. Math. Phys. 262234
[12] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic) p 454

