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Abstract. It is shown how the calculation of partition functions for all Potts models might 
be reduced to the calculation of Tr(yi, . . . yipn) where the y stand for generators of a 
generalised Clifford algebra. Then the expression for Tr(yi, . . . yi,) for an arbitrary collec- 
tion of such y matrices is derived. 

1. Introduction 

The transfer matrix technique for a statistical system with the most general translational 
invariant and globally symmetric Hamiltonian on a two-dimensional lattice leads to 
appropriate algebras of operators which are algebra extensions of the type naturally 
associated with the lattice-grading groups. 

If the symmetry group of a Hamiltonian is the 2, cyclic group then the algebra 
generated by the transfer matrix approach is, in most of the known cases, the generalised 
Clifford algebra Cp)  [ 13. It is due to its properties that the given model has the duality 
property [2-41. 

In this paper we investigate the consequences of the simple fact that transfer 
matrices for all Potts models on the torus are just specific elements of the Cg)  algebra. 
Before we do this we give in 0 2 some preliminary remarks about C$) algebras [ 11 as 
well as some other necessary generalisations [2]. 

The motivation for the investigation presented comes from Baxter [ 121 who writes: 
'The only hope that occurs to me is just as Onsager (1944) and Kaufmann (1949) 
originally solved the zero-field Ising model by using the algebra of spinor operators, 
so there may be similar algebraic methods for solving the eight-vertex and Potts models'. 

2. Preliminaries 

In this section we introduce appropriate generalisations of y matrices and cosh 
functions, to be used later on while investigating the algebraic structure of transfer 
matrices for Potts models. 

We start with the Cy;' generalised Clifford algebra [ l ]  which is defined as an 
associative algebra over complex numbers C, generated by y l ,  . . . , y z p  matrices 
satisfying 

6JY.Y. = Y. i<j; y' = U ;  i, j =  1, .  . . ,2p  
f 1 171 

o = exp(2ri /n) .  
(2.1) 
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The algebra of ( n p  x n‘) matrices has-up to equivalence-only one irreducible and 
faithful representation. Its generators { y i } t P  can be represented as tensor products of 
generalised ( n  x n )  Pauli matrices U , ,  u2,  u3 in complete analogy with the usual Clifford 
algebra case. One should however distinguish the case of n being odd from that of n 
being even [l], namely for n odd: 

where i , j E Z ; = { O , l ,  . . . ,  n - 1 } ,  i.e. 

U ,  = 1 0 1 0 0 . . .  0 
0 0 1 0 . . .  0 

0 0 0 0 . . .  1 
1 0 0 0 . . .  0 

. . .  

For n even u2 and u3 are different, i.e. 

u2= a i + l , j ) y  U3 = (2.3) 
where 6 is the primitive 2nth root of unity. 

representation of y. We choose the following one: 
With the use of generalised Pauli matrices one readily finds a Kronecker product 

y1= U,OZOZO.. .OZOZ 

y,=u,Ou3OZ@.. .OZ@Z 

y*p’ ~ p = u , @ u l O . .  .Oa,Ou,. (2.4) 
The basic importance of C:;’ algebra for us relies on the observation that transfer 
matrices for both planar and standard Potts models are just specific polynomials in 
the above y matrices. 

Apart from the generalisation of the Clifford algebra we shall also need ‘generalised 
cosh’ functions and appropriate projection matrices [2]. 

We start with the ‘cosh’ function. Let x be any element of an associative finite- 
dimensional algebra (for example, a number or matrix). We define 
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Then 

From (2.6) one easily derives 
1 n - l  

n k = O  
~ ( x )  =- 1 w-ki exp(wkx), i E Z k .  

1471 

(2.6) 

Most of the identities satisfied by cosh and sinh functions generalise straightforwardly 
to the case of J ; for example 

Thesef; functions are shown to be important also while considering the duality property 
of the planar Potts models [3] because the eigenvalues X k ;  k €  zi (with X k  = ~ - k )  of 
the interaction matrix are expressed by f; according to the formula [2] 

where a is a parameter. 

or just an element of an associative algebra) satisfying U" = 1. We define 
Finally we introduce adequate projection operators. Let U be a matrix (or number 

1 n - l  

v = - c  U'  
n i = O  

then 

v2= v 
as could easily be shown. 

If one now introduces a set { vk},"-' of projection operators 

(2.10) 

(2.11) 

(2.13) 

This ends the preliminary section. In the following we shall investigate the structure 
of the transfer matrix, mostly for the planar Potts model, using the following standard 
operators: 

(2.14) 

(2.15) 
where cl and u3 (together with I :  ( n  x n )  matrices) are situated on the kth site from 
the left-hand side. 

3. The structure of transfer matrices 

The transfer matrix approach has led the authors of [3-51 to the use of C$' algebras, 
although this observation does not seem to be realised by the authors mentioned. 
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Meanwhile it is a very important fact that the transfer matrix M is just an element 
of Cl",'; hence it is a specific polynomial in y matrices (2.4). Due to this, the problem 
of determining the partition function might be reduced to the problem of calculating 
traces: Tr yi, . . . yir (modulo eventual combinatorial complexity). This point of view 
is known to lead to the exact solution of the Onsager problem, with the use of Pfaffians 
at the final stage [ 6 ]  of computations, for the Ising model. 

We are now going to investigate algebraic properties of transfer matrices for Potts 
models. Let us assign to the torus p x q lattice ( p  rows, q columns) a set of states 

z={(Sik); SikEZn} 

where the multiplicative realisation of the Z, cyclic group is chosen and Sik, (Sik E 
{ w r } : - ' ) ,  denotes a matrix element of the p x q matrix. 

The total energy for the standard Potts model is then given by 

while for the planar Potts model 

(3.1) 

The transfer matrix M is represented as a product 

M = B A  (3.3) 

where in the case of the standard Potts model [ 4 , 7 ]  

and 

(3.4) 

The corresponding expressions for A and B ( n  ' x n p ,  matrices in the case of the 
planar Potts model [ 4 , 7 ]  are given by 

and 

(3.6) 

where 

A ,  = exp(2a Re U ' ) .  (3 .8)  
The boundary conditions corresponding to the torus lattice result in the 

requirement 

z p + ,  = z, * (3 .9)  
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The interaction ( n  x n) matrices a* for corresponding models are given by 

(planar) 

(standard) 

(3.10) 

A knowledge of interaction matrices enables one to represent the matrix A in an 
exponential form after a dual parameter a* has been introduced. As (3.11) is a special 
case of (3.10) we shall proceed to do so only for the planar Potts model. 

If one defines the dual parameter a* [2,8] according to 

det a*(a*) = n"[det a*(a)]- '  (3.12) 

then the matrix A can be written in the form 

A=[det  a*(a)]"'" exp(a* k = l  f (xk+x:)). 

It should be noted that the factor in front of the exponential is known as 

(3.13) 

(3.14) 
k=O 

where X k  are given by (2.9). 
Due to the property XE=ZE=U both A and B operators could be expressed as 

simple polynomials in X and Z with the coefficients just being products off;(  a * )  and 
f;(b). The boundary conditions, as in the Ising model case, give rise to projection 
operators ( n  of them). First we shall analyse the B matrix of the planar Potts model 
with boundary conditions being taken into account. In order to do that we extract 
from B the boundary term and notice (for n odd) that [7] 

(3.15) exp( bZ;Z,) = exp( bU7;' yl)  

where 

(3.16) 

(hence U" = U ) .  
The n-even case differs only in a factor [7], for example 

z;z, = 5-l Q , ' Y ' .  

Therefore from now on we shall write formulae only for n odd. 
The (3.15) term and its Hermitian conjugate may be expressed in terms of the 

projection matrices V, defined by (2.12) and, if in addition a set of {&}:-I matrices 
is introduced according to 

(3.17) 
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then, due to (2.13), the final expression for the B matrix reads as follows: 
n-1 

B =  BkBlVk. 
k = O  

(3.18) 

It is now obvious that a similar structure for B can be obtained for the standard Potts 
model, and that for both cases the transfer matrix M is a polynomial in y. 

Because of (3.16) all V commute with the A matrix; therefore we obtain for the 
partition function 2‘ the following formula: 

(3.19) 

Already from formula (3.19) one may draw an important conclusion, namely the 
partition function S for a finite torus lattice with Z, symmetry is proportional to a 
polynomial in J ; (a* )  and f ; ( b ) ,  the coefficients of the corresponding monomials being 
w k  for some k E 2:.  This is easily seen from the fact that xk = w - ’ y ; ’ y k  (for n odd), 
7; = y ;  = U  and (as we shall see) because the normalised trace takes the values 

k Tr(y,, . . .  y , , ) ~ { O , w  ; k = 0 ,  1 , . . . ,  n - 1 ) .  

For n = 2 (fo = cosh, fl = sinh) this polynomial is known [6] due to the properties of 
the Pfaffian. For arbitrary n the form of this polynomial can also be derived [7]. 
However no transparent final formula is known to us and an adequate generalisation 
of the trace formula Tr( y,, . . . yJ though also already known-used together with the 
expression for the polynomial in y-gives a rather complicated outcome. We hope 
however to achieve meaningful progress in that direction soon. 

The use of the generalised Pfaffian-like formula is of course not the only way to 
proceed with the expression (3.19). One may also try to follow, by analogy with n = 2, 
those approaches which use Grassmann algebras associated with Clifford algebras via 
Witt decomposition (‘Fermi operators’) as for example in [9] or (another method) in 
[ 101. The appropriate generalised Grassmann algebras associated with the C;:) ones 
(‘paraFermi operators’) are known [ 111. Meanwhile, we conclude our temporal investi- 
gation by supplying, in the forthcoming section, a trace formula (4.1) for the arbitrary 
monomial in generalised y. 

4. The trace formula 

Let us adopt the convention: Tr 1 = 1. In the following the explicit formula for the 
trace of any element of the C:;’ algebra is derived. This also solves the problem of 
traces for the C$!, algebra as C$:yl is a direct sum of n copies of C$,’. 

The derivation has the form of a sequence of five lemmas, where (stated once for 
all five) i, , . . . , ik, . . . , i k ,  = 1 , .  . . , 2 p .  

Lemma 1. Let k # 0 mod n ;  k E N. Then Tr( yi, . . . yi,) = 0. 

ProoJ: The same as for usual Clifford algebras. Use the U matrix defined by (3.16). 

From now on S,  denotes a group of permutations of the r-elemental set. With this in 
mind we have the following lemma. 
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Lemma 2. Tr( y,, . . . yzkn) # 0 iff there exists a E S k n  such that 

(a) = i , ,2)  =.  . . = i , , , , ,  

i r ( n + l )  . . = i u ( 2 n ) ,  * . . 9 i r ( k n - n + l )  = .  . . = i u ( k n ) *  

Pro05 The proof follows from the observation that, due to (2.1), if no n-tuple of the 
same y exists then Tr(. , .) = 0. Other k - 1 steps of the proof are reduced to this first 
one. 

It is then trivial to note but important to realise the following lemma. 

Lemma 3. Tr (yZl . .  . y,,) E (0, us; s = 0, 1 , .  . . , n - 1) 

The major problem now is to determine this value ‘0’ or  ‘us’ for an  arbitrary set of 
indices i , ,  . , . , i k .  For n = 2 it is the signum function that takes care of the (-1)’ value 
of Tr(. . .) # 0. We shall therefore introduce a generalisation of the signum function 
according to the following definition. 

Dejnition. The signum-like function K is a surjective map K :  S, + 2, defined by 

where 
O,,,,Ou,,, * * .  Ou, , ,=  K ( a ) 8 , 8 * . .  . 0, 

weio, = ojei i < j ,  of = 0, i , j =  l , . .  . , p .  

For n = 2 these 8 matrices become anticommuting matrices, i.e. the generators of 
Grassmann algebra, while K becomes (only for n = 2 )  the epimorphism. 

Now consider a set of yi,, . . . , yikn matrices which consists of k different n-tuples 
of correspondingly the same y mixed together. Then of course there exists (TE S k n  

satisfying (a) from lemma 2.  In fact there are many. If one however chooses one such 
that 

(b)  a(1) < 4 2 )  <. . . < a ( n ) ,  

a( n + 1 ) < . . . < a( 2 n) ,  . . . , U( kn - n + 1) < . . . < a( kn ) 

then one has the following lemma. 

Lemma 4. Let yI, ,  . . . , yt,, be such a collection of k different n-tuples of generalised 
y matrices that conditions (a) and  (b)  are satisfied; then 

Tr(y,, . . . yik.) =.K(m-’ ) .  

Prooj This follows directly from the definition of the K signum-like function. 

The generalisation of lemma 4 to the arbitrary case of some of the n-tuples being equal 
is straightforward. Bearing this in mind and  from the other lemmas we have another 
lemma. 

Lemma 5 

(4.1) 
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for an arbitrary collection of indices i,, , . . , ikn, where 6 denotes the multi-index 
Kronecker delta, i.e. it assigns zero to its arguments unless all of them are equal and 
in this case 6(. , .) = 1. The sum I; is meant to take into account only these permutations E 

Sk, ,  that satisfy the following conditions: 

(b) ~ ( l )  < ~ ( 2 )  <. . .< ~ ( n ) ,  a(n+ 1) <. . .< ~ ( 2 n ) ,  . . . , 6 ( k n  - n +  1) <. . .< c+(kn) 

and 

(c) a(1) < u(n+ 1) <. . . < a ( k n  - n +  1). 

The ‘(c)’ condition is necessary to avoid an overcounting of U satisfying (a). 

Lemma 5 provides us then with the straightforward generalisation of the Pfaffian 
also for linear combinations of generalised y as can be seen from the following lemma. 

Lemma 6. Let k=I;;L, piyj where { y j } ; r  form the set of generators for Ci:), while 
p i e @ ;  i = 1 ,  . . . ,  2p. Let 

P =  
P2 r 

and denote by (PI, P 2 , .  . . , P,,) = I;?:, pIip2!. . . pnr an n-linear ‘scalar product’ of 
P, , . . . , Pn vectors [ 111. Then 

Again I;’ means that conditions (b) and (c) are satisfied. Naturally forpula (4.2) solves 
the problem of taking the trace from a product of any number of P as this trace is 
zero, for the number of P different from kn, k E N. 

The formula (4.2) migkt be useful for our purposes if one could express matrices 
A and I3 as a product of P which however seems to be possible only for n = 2. 
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